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ABSTRACT 

The concept of a stochastic process is discussed, 
and sequential correlation is defined. Equations are pre- 
sented for obtaining the minimum variance estimate of the 
state of the process when given linearly related data sam- 
pled at  discrete times. These results are extended to the 
continuous case, yielding a linear differential equation 
for the time-varying estimate. This equation is solved 
to obtain an integral representation of the estimate. An 
application of the estimation technique is developed. 

I. INTRODUCTION 

This  paper is concerned with the task of continuously estimating the time-varying s ta te  of a 

stochastic process when given data which are linearly related to that state. Thus the observed data vector 

&ct)  i s  given by 

where t is time, A ( t )  is a known matrix, and x ( t )  is the state of some stochastic process. I t  is the quantity 

z ( t )  which is to be determined. The rank of A ( t )  is assumed to be l e s s  than the dimension of x ( t ) ,  so that 

the correct value of x ( t )  can only be estimated. The estimation procedure to be discussed here will be 

'Column vectors are small letters; matrices are capital letters; the superscript T denotes the transpose; other 

superscripts denote scalars; t is time; the star (*) refers to an estimated quantity; the symbol E [--I indicates the ex- 

pected value of the bracketed quantity over the ensemble of all  similar experiments. 
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II. THE SEQUENTIALLY CORRELATED STOCHASTIC PROCESS 

The concept of a stochastic process to be considered here follows the discussion in Ref. 1. Briefly, 

one is to imagine a random process with a time-dependent output vector, x ( t ) ,  such that each component is a 

random variable (see Fig. 1). The continuous process can be thought of a s  the limiting case of a discrete 

process, which is constructed a s  follows. Le t  

be an arbitrarily chosen s e t  of sample times, and le t  

be the corresponding sequence of output vectors on any given experiment, where xi h a s  been used to denote 

If this t ime  sequence is held fixed over the ensemble of all similar experiments there exis ts  a set of time- 

dependent “first” probability density functions f k @ ,  t i ) ,  defined over this ensemble, such that 

probability (zk < Ck < zk + dxk a t  t = t i )  = fk ( x k ,  t i )  dzk (6) 

where xk is the kth component of the vector x .  There also exis ts  a se t  of time-dependent “second” probabil- 

ity density functions fkl(xk, x l ,  t i ,  t . ) ,  such that 
1 

probability (xk  < Ck < xk i- dxk a t  t i ,  x 1 1 1  < 6 < x i- dxl a t  t . )  = f k l ( x k ,  x‘, t i ,  t i )  dxk dx‘ (7) I 

For ti = t .  Eq. (7)  describes the joint probability density function for the random variables xf and x i .  1 
I 

Similarly, there exis ts  an nth-order probability density function of the stochastic process. (Only the second- 

order functions will be needed for the analysis presented here). If i t  is assumed that the probability density 

functions introduced above exist for all times t i ,  and are continuous functions of ti and t . ,  the stochastic 

process will be said to be continuous. 
I 
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for all t .  < t .  < t , where R (ti, t i )  i s  the normalized correlation matrix defined by Eq. (12). 
1 -  I -  k 

It is shown in Ref.  2 that a sequential ly  correlated process  is a Markoff process  if the x: are 

Gaussian random variables.  

5 
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The covariance matrix describing the error in this estimate is 

A A A 
A. I = E [ (x i  - xi) (xi - x $ ~ ]  = Ai - Rii [Ai - A;] R; 

Upon introducing the data vector c$ the minimum variance estimate of x .  becomes i' I 

A A 
1 I I 1  1 1  

x* = x .  + 1. (4. - A .  x . )  

where 

A A 
W .  = A. A T  [ A .  A. A ? ]  -' 

I 1 1  1 1 1  

and the covariance matrix describing the error in this estimate is 

A A 
A: = E [ (x?  - x . )  (x? - x i )* ]  = A,. - 1, A .  A. 

I l l  1 1 1  I 

The process is repeated at time tk > t . ,  yielding a sequential estimate of the xi .  
I 

7 
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%us, to first order in At, 

T I  At (30) [ A i  Ai A T ]  = [ A i  Qi At  
A 

W .  1 = [ A ; k T  +Qi  A T ]  [ A i  Qi A T ]  -' (31) 

* *  
[Ai - Ai I = {Qi  - Wi [Ai A; + A i  Q,] } At (32) 

Note that W .  i s  specified in terms of quantities defined at ti. (The matrix inverse in Eq. (31) i s  assumed to 

exist.) Dividing both s ides  of Eq. (32) by At, and taking the limit as  At + 0, the (nonlinear) differential 

equation for the covariance matrix of the error in the estimate z*(t)is found to be 

I 

d 

at 
- [A*] = Q -  W [ k  A* + A  Q l  (33) 

where Q ( t )  is defined by Eq. (28) and w ( t )  is defined by Eq. (31). The subscript i h a s  been dropped in Eq. 

(33), indicating that all quantities are continuously evaluated at the variable time t. Equation (33) can be 

integrated to obtain A*(t). 

From Eq. (19) i t  follows that 

* Ai zi = +i 

Thus  Eq. (19) becomes, to first order in At, 

[z? - 213 = {di zT + W .  [&i - A i  Ri zf - A i  zTI } At 
I 1 

Proceeding as  with Eq. (321, the (linear) differential equation for the estimate z * ( t )  i s  found to be 

( 34) 

(35) 

a 
dt 
- [z*l = MZ* + Iy 4 (36) 
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V. AN APPLICATION OF THE ESTIMATION TECHNIQUE 

Consider the simple estimation problem presented in Section I, where the observation i s  

T 1 2  and A = [l, 11.  The quantity x ( t )  = [ x  ( t ) ,  x (t) ] i s  the vector to be estimated. Le t  

0 Î 1 

and hence 

R ( t )  = 

- a  

0 
(41) 

Thus the particular process in mind i s  composed of an exponentially correlated variable x1 ( t )  with 

constant variance U T ,  and an unknown constant x2 ,  with variance D;. The cross correlations are zero. The 

estimation problem could be interpreted as the extraction of the constant x 2  from the “noise” x1 ( t ) ,  or a s  the 

recovery of the “signal” x 1 ( t )  in the presence of  the measurement bias xz .  

It will be convenient to define the matrix 

A ( t )  = A - A*(t) (42) 

11 
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where f ( t )  = 2 ( r 2  + 4 2  + 1). Equation (48) integrates to yield 

2 * ( d  = + ( t )  - x'*(t )  

Notice that as  a + m and/or a s  t + m, 

13 
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VII. DISCUSSION OF THE RESULT 

I t  has  been shown that the estimation equation for adiscrete, sequentially correlated stochastic 

process extends to the continuous case to yield a linear differential equation for the time-varying estimate. 

Only the rate of change of the observed data vector enters into this equation, which i s  a consequence of 

applying the relationship (34). The reader may be tempted to carry this process one step further, and 

substitute 

into Eq. (Xi), thereby eliminating any consideration of the data a t  all. It can be quickly verified, however, 

that this leads to a differentiai equation for the estimate which has  no unique soiution. 

In order to solve Eqs. (33) and (36) numerically with a digital computer i t  may be convenient to 

express them a s  difference equations; i.e., 

where Qi and W i  are evaluated from Eqs. (28) and (31). Equations (57) and (58) are the limiting cases  of (19) 

and (21) as (titi - ti) -+ 0. It is interesting to note that in passing from the discrete to the continuous case 

certain new matrices appear, such a s  A, A, and R, and other combinations of terms go to zero. The difference 

equations (57) and (58) could therefore experience different numerical behavior than Eqs. (19) and (21) when 

being evaluated on a digital computer, even though the results are theoretically identical in the limiting case 

At -+ 0. Thus the continuous form of the estimate mi&t  be preferable for some practical problems where 

numerical stability must be considered. 

. .  

15 



REFERENCES 

1. Reza, F. M . ,  An Introduction to Znfonnation Theory, ch. 10, McGraw-Hill Book Co., New York, 1961. 

2. Pfeiffer, C. G., Sequential Estimation of Correlated Stochastic Variables, Technical Report 32-445, 

Jet Propulsion Laboratory, Pasadena, July 1, 1963. 

JPL Technical Report No. 32-524 

17 


